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Confidence level of ECE evidence

(PAC O1) (1M#0)
*Wild guess
e(Guess
eHunch

*Educated guess

*Vox populi

*The preponderance of evidence suggests
that... |

*What else could it be

*Smoking gun

*Three unrelated witnesses in broad
daylight swear that...
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PLIRDY ¢ F. KINE-

Contributions to the sample current from electron
backscatter-bombardment of nearby surfaces (all
graphite-coated) were measured at normal incidence
using both RP and ZR methods. Secondaries generated at
these surfaces have mostly very low energy and serve to
strike and reduce the apparent yield of the sample. ZR
curves need to be corrected (< 5%) for this effect.
Primary electrons elastically scattering in the forward
direction from the surface at grazing incidence were
collected in a “black-hole” gridded structure behind the
sample holder. The sample was moved laterally several
electron beam diameters between successive angular
measurements, to ensure that a previously-unbombarded
area was used for the next SEY measurement.

XPS measurements were made on TiN-coated samples in
a separate UHV system and then the samples were
transferred to the SEY-measurement chamber. The SEY-
measurement chamber has an  Auger electron
spectrometer (AES), which is used to check surface
chemistry on a spot several mm away from the SEY-
measurement area. Conditions in this system are similar
to the LER, cleaned for UHV operation and unbaked with
a pressure of one ntorr or so.

+70V _

—

I

6-2000 Total Yield = =
8408A2 P

Figure 3. Circuit for zero retard yield measurements,
angular beam incidence. The volume around the sample
is at ground potential and field-free.

SIAC-PVB -2 1

3. Results

3.1 General Comments

Figure 4 shows the unacceptably large (for beam chamber
use) peak SEY of >2 of air-oxidized etched aluminum
alloy. In fact, chemically removing residual carbon from
the surface serves to increase the SEY by increasing the
percentage of surface covered by high-yield aluminum
oxide in place of lower yield carbon. Copper has a much
lower yield and need not, for present machines at least, be
coated with a SEY-lowering material. For aluminum
alloy chambers and high-field components, TiN coating is
frequently used. However, chambers are always exposed

BB

AL seY

Secondary Electron Yield

0 200 400 600

Primary Beam Energy (eV)

800

Figure 4. SEY of alkali-etched Al alloy in Figure 1.

to atmosphere following coating, which leads to a rise in
the SEY of the coated surface. Such surfaces need to be
“conditioned” in situ to restore a low SEY.

Conditioning of beam chambers, i.e., an in-situ reduction
of the gas load from the chamber walls occurs by
synchrotron light and electron bombardment. This
process and its effect on the SEY of the walls is
characterized as follows. The as-deposited/air-exposed
SEY (e.g., TiN-coated aluminum alloy, Figure 5, inset) is
mainly determined by the presence of a surface water and
hydrocarbon layer [9]. Electron bombardment of this
layer, the initial processing that occurs during machine
comissioning, desorbs the gas layer and also results in
electron-induced adsorption of carbon from carbon-
containing residual-gas molecules. Water desorption and
carbon deposition, amongst other processes discussed
later in this paper, serve to reduce the peak SEY to near
one (Figure 5, graph). This yield is close to the in-situ as-
deposited TiN value [4]. The conditioning time can be
reduced by glow discharge cleaning (GDC) of the
chamber walls after machine assembly. Such ion sputter-
removal of surface gas is much more efficient than
photon/electron bombardment. Measurements of the
SEY following simulated conditioning and GDC are
included below.
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Figure 15. Collected electron energy distribution from
TiN-coated Al alloy. The primary beam and analyzer axis
were normal to the sample surface. The most probable
secondary electron energy is 2.9 eV (8.4 eV FWHM).

The generated electron distribution curve (EDC) consists
of true secondary, inelastic and elastically-reflected
electrons. Forty eV is usually considered the high
energy-pass cutoff for “true” secondary electrons.
Relatively few primary electrons are backscattered
elastically. The remainder of the generated spectrum
consists of re-diffused primaries that have suffered loss
events (ionizations, Augers, plasmons, etc.). The relative
proportion of each kind of generated species is shown in
Table I. An incidence energy of 300 eV was chosen
because that is about the peak of the SEY and, hence, the
most efficient for total secondary electron production. At
lower primary energies, a progressively larger fraction of
the distribution will be elastic [11]. The emitted electron
angular spectrum will be cosine but peaked for
backscattered elastics.

o |040ev 40-295ev  295-310eV
0° |589% 366% 45%
82.5° | 568%  389% 43 %

Table I. Normalized EDC intensity areas at normal (0°)
and grazing (82.5°) primary electron incidence angle 0.

At a grazing incidence of 82.5°, the EDC still looks very
similar to Figure 15 but now with the most probable
energy at 2.7 eV (7.1 eV FWHM). Unlike normal
incidence, more primaries will stay within the escape
depth of generated low-energy secondaries, i.e., grazing
incidence increases the SEY. Unfortunately, the energy
analyzer has its axis along the primary beam direction,
resulting in an off-sample-normal collection slit. The
relative proportion of each kind of generated species is
about the same (Table I), however, suggesting that the
TiN surface roughness is sufficient to homogenize the
secondary emission over all incidence angles.

S LACPUB ~82 1A

3.5 The Secondary Yield Of Other Materials

The SEY of some materials used for beam vacuum
chamber construction (and graphite, for reference) are
plotted in Figure 16. The surfaces were Ar-sputtered
(~1x10" ions-cm™) to remove most, but not all, surface
contamination, as determined by Auger electron
spectroscopy. Remaining carbon levels were in the 1-5
atomic per cent range. The yields of Figure 16 are those
expected for beam vacuum chambers that have been
glow-discharge cleaned after assembly and pumpdown.

Secondary Electron Yield

Primary Beam Energy (eV)

Figure 16. SEY of some materials used in
accelerator/storage ring construction. Graphitic carbon is
included as a measurement reference.

The yield of sputter-cleaned TiN is consistent with
previous work for as-deposited, not exposed to air, films
[4]. The result for polished copper (“Pol Cu”) shows a
shift of the peak SEY to higher primary energy, probably
due to less electron-scattering (SEY-lowering) surface
disorder.

4. Discussion

4.1 Primary Angle Dependence of SEY Peak Yield

SEY theory predicts that the normalized yield 8/3,, where
8 is the SEY maximum at normal incidence, should vary
as l/cos 6 [12]. Figures 17 and 18 show that the
experimental data from TiN/AI or Cu do not match theory
for the simple case, Ep= Eyax, (i.e., the yield is not
tending toward large values as 6 approaches grazing
angles) and, incidentally, appears independent of
conditioning (Figure 17) as well. Ep is the primary
electron energy and Eyax is the primary electron energy
corresponding to the maximum SEY, 8¢, at normal
incidence.



Secondary electron emission

e main quantity of interest is the secondary emission yield

(SEY) &:

— Jd=average number of ejected electrons per incident
electron
¢ function of: incident energy Ep, incident angle 69 and

surface material

— model parametrized to fit data by R. Kirby and F. King

(SLAC) for TiN-coated extrusion sample

2.0
L] L] LJ ! ] L} ] ! L} ] L ] !  J L] ¥ ! ) L }
SEY of TiN-coated extrusions (normal incidence) “ -

measurements on an actual coated chamber sample for different
electron doses (R. Kirby/F. King file ¥3752.ASC, 12/20/96)
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M. A. Furman, “Simulations of the Electron-Cloud Effect” APS mtg., Long Beach, CA, April 30,2000 p. 10
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Figure 17. Normalized peak yields from TiN/Al (Figures
6 (®) and 8 (+)) vs. primary beam incidence angle, at
Emax =440 and 389 eV, respectively. The curve fit is exp
[0.32 (1-cos 0)].

1.75 7
1tcoza

Mormatzed Yeeld
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Figure 18. Normalized peak yields from HER copper
(Figure 13) vs. primary beam incidence angle, at Eyax
=675 eV. The curve fit is exp [0.40 (1-cos 0)].

The lack of agreement with theory begins to occur far
from grazing incidence, so this does not appear to be a
surface-only related phenomenon. In fact, the surface
finishes of the TiN/Al and Cu are quite different.
However, as the primary beam angle moves toward
grazing incidence, an ever-increasing fraction of
primaries will exit the surface, in the forward direction,
before losing their full energy to secondary electron
production [13]. A simple phenomenological
explanation, due to Bruining [14], accounts for the
exponential dependance of Figures 17 and 18. Suppose
X is the average depth (Figure 19) at which N,
secondary electrons are generated at normal primary
beam incidence.

Primary Beam

A //’ A // / / /// oy R e
|
Substraie

Xmcos@
& y X
RN
~
\\
~e_ J
Figure 19.  Schematic diagram [14] showing the

secondary electron generation depth, X,,, as a function of
primary electron incidence angle, 6.

Then the escape probability depends on secondary
electron absorption ¢, and the SEY is given by

1) 8=N;eX,
At other than normal incidence, the yield is
2) 69 = Ns e -(a chos 0)

Combining, the normalized yield as a function of primary
incidence angle is given by

which dependence fits the experimental data very well, as
shown in Figures 17 and 18.

4.2 Electron Conditioning - LER

Figure 20 shows the air-exposed TiN-coated Al peak
yields, as a function of electron dose, for three different
samples, all pre-exposed to ambient atmosphere. The
dosing and SEY measuring beams were normal to the
surface. As an aside, others [15] have made such
measurements to higher dose and shown that the geak
yield levels off at approximately 1x10'® electrons cm.
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